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S U M M A R Y
I calculate three-dimensional (3-D) sensitivity kernels of multimode surface wave observables
in radially anisotropic earth media for perturbations in wave speeds αH, αV, βH, βV and η as
well as in density ρ. The 3-D phase-delay and amplitude kernels are formulated based upon
Born approximation in the framework of surface wave mode summation, fully accounting
for cross-branch mode coupling. Long-period, multimode, surface wave sensitivity kernels
show structures of multiple reflected body waves. Jean’s relation can be applied to quantify
the ‘mode-ray duality’ of multimode surface waves and provide guidelines for measurement-
window determination.
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1 I N T RO D U C T I O N

In the past several decades, ray-theoretical tomographic studies have
made great contributions in advancing our understanding of the
Earth’s deep interior. Seismic ray theory is based upon a high-
frequency approximation, it breaks down when the length scale
of lateral heterogeneities is small compared to the characteristic
wavelength of the seismic waves. To overcome this resolution limits,
efforts have been made to develop finite-frequency theory to account
for diffractional effects in wave propagation based upon first-order
Born approximation (e.g. Woodhouse & Girnius 1982; Snieder &
Nolet 1987; Romanowicz 1987; Yomogida & Aki 1987; Meier et al.
1997; Marquering et al. 1998; Dahlen et al. 2000; Dalkolmo &
Friederich 2000; Hung et al. 2000; Zhao et al. 2000; Spetzler et al.
2002; Zhou et al. 2004; Tromp et al. 2005; Yoshizawa & Kennett
2005; Liu & Tromp 2008). High-resolution global models based
upon 3-D Born sensitivity kernels have been recently derived from
delay-time measurements of body waves as well as fundamental-
mode surface waves (e.g. Montelli et al. 2004; Zhou et al. 2006).

Higher-mode surface waves (overtones) play an important role
in imaging the Earth’s interior in that they provide complemen-
tary depth coverage to deep-turning body waves and fundamental-
mode surface waves, especially in the mid-mantle roughly between
∼250 and ∼1500 km. Surface wave overtones have been widely
used in global and regional tomographic studies based upon seis-
mic ray theory (e.g. Stutzmann & Montagner 1994; van Heijst &
Woodhouse 1999; Simons et al. 2002; Lebedev & Nolet 2003). A
variety of approaches have been proposed to utilize the dispersive
nature of higher-mode surface waves. The main difficulty associ-
ated with overtone measurements is that different overtone modes
can arrive simultaneously in the seismogram within a narrow fre-
quency band, making it difficult to extract a single overtone mode

(e.g. Lerner-Lam & Jordan 1983; Nolet 1990; Li & Romanowicz
1996; van Heijst & Woodhouse 1997). In this paper, I develop first-
order Born theory for multimode surface wave observables, that is,
phase-delay and amplitude measurements made between data and
(fully mode-summed) synthetics without isolating any single over-
tone modes. The theory also applies to single-mode measurement
as a special case; and, in the case of single-mode measurement, I
show that 3-D volumetric sensitivity kernels can be reduced to 2-D
phase velocity kernels.

Radial anisotropy (or transversely isotropy) is hexagonally sym-
metric anisotropy with the axis of symmetry being radial (vertical).
Radial anisotropy in the upper mantle has been widely observed
in surface wave studies since the early 1960s (e.g. Anderson 1961;
Aki & Kaminuma 1963). Dziewonski & Anderson (1981) reported
the global average of radial anisotropy in the top 220 km in the
Preliminary Reference Earth Model (PREM). Later studies suggest
global existence of seismic anisotropy in the lower upper mantle,
the transition zone as well as in the shallower part of the lower man-
tle (e.g. Montagner & Kennett 1996; Beghein & Trampert 2003;
Panning & Romanowicz 2006; Zhou et al. 2006). Based upon ad-
joint methods, Sieminski et al. (2007) investigated finite-frequency
sensitivity of fundamental-mode surface wave cross-correlation
measurements to perturbations in anisotropic parameters. In the
presence of radial anisotropy, seismic waves of different polariza-
tions can be strongly coupled and the coupling is more significant
for higher-mode surface waves than for fundamental-mode surface
waves. In the calculation of multimode sensitivity kernels, I fully
account for mode coupling in radially anisotropic earth media.

I develop 3-D Born sensitivity kernels for multimode, surface
wave phase-delay and amplitude measurements made on windowed
seismograms (with interested wavepacks in the measurement win-
dow). In practice, tapering techniques can be applied to make
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measurements more stable and reliable. Following Zhou et al.
(2004), I formulate 3-D Born sensitivity kernels for multitaper
measurements, which also apply to measurements made with single
tapers (e.g. a boxcar taper) as a special case. The derivation of Born
sensitivity kernels in this paper can be viewed as a generalization
of the theory of Zhou et al. (2004) to allow for perturbations in ra-
dial anisotropy. Much of the discussions in this paper is focused on
phase delays made on windowed seismograms where overtone en-
ergy dominates within the measurement window. I show that Born
sensitivity kernels of long-period, multimode measurements exhibit
3-D structures of multiple-reflected body waves as a result of cou-
pling among overtone modes. The ‘mode-ray duality’ of multimode
surface waves will be discussed in Section 9. The 3-D multimode
kernels can be computed very efficiently using a fast computation
scheme that will be documented in a second paper (Zhou, in prepa-
ration). All examples of multimode kernels shown in this paper are
calculated with full mode coupling.

2 E Q UAT I O N S O F M O T I O N, G R E E N ’ S
T E N S O R A N D M O M E N T T E N S O R
R E S P O N S E

In this section, I review basic equations of surface wave mode
theory to establish a notation for the consideration of multimode
Born approximation in anisotropic media in Section 3. Whenever
possible, I try to follow the same notation as used in an early paper
on surface wave Born theory in isotropic media by Zhou et al.
(2004).

Consider an elastic earth model occupying a volume ⊕ with
surface ∂⊕. The model may have a number of internal solid-solid
discontinuities and fluid–solid discontinuities, denoted by �SS and
�FS, respectively. The union of all the boundary, including the
outer free surface ∂⊕, will be denoted by � = ∂⊕ + �SS + �FS.
Let Grs(ω) be the Green’s tensor, or displacement response at the
receiver xr = (r r, θ r, φ r) to an impulsive source at the source xs =
(r s, θ s, φ s). The Green’s tensor satisfies the elastodynamic equation

−ω2ρGrs − ∇ · [C : ∇Grs] = I δ(x − xs) in ⊕, (1)

as well as dynamic and kinematic boundary conditions:

[n̂ · (C : ∇Grs)]
+
− = 0 on �, [Grs]

+
− = 0 on �SS, and

[n · Grs]
+
− = 0 on �FS, (2)

where n̂ is the unit vector normal to the boundary, the quantity C
is the fourth-order elastic tensor, and I is the identity matrix. The
quantities ω and ρ are the angular frequency of the seismic wave and
the density of the elastic media, respectively. The far-field surface
wave Green’s tensor Grs(ω) can be written as a summation over all
surface wave modes σ (Snieder & Nolet 1987; Dahlen & Tromp
1998, section 11.3):

Grs(ω) =
∑

σ

prp
∗
s e−i (k−nπ/2+π/4)

√
8πk| sin | , (3)

where  is source–receiver angular arclength, and the integer n is
the polar passage index (e.g. n = 0 for minor arc and n = 1 for major
arc). The quantity k is angular wavenumber of mode σ . The vector
p = r̂U − i k̂V + i(r̂ × k̂)W is surface wave polarization vector
of mode σ with U (r ), V (r ) and W (r) being the vertical, radial and
transverse displacement eigenfunctions (Snieder & Nolet 1987).
The roman subscribe r and s denotes quantities evaluated at the
receiver xr and the source xs, respectively. The asterisk denotes

the complex conjugate. We have applied the same normalization in
eq. (3) as in Tromp & Dahlen (1992) and Zhou et al. (2004).

For a moment tensor seismic source, displacement at the receiver
can be written as (Dahlen & Tromp 1998)

s(ω) = (iω)−1
[

M :∇sG
T
rs(ω)

] · ν̂, (4)

where M is the second-order moment tensor, the quantity ν̂ is the
unit vector describing the polarization of the seismometer at the
receiver, and the superscript T denotes the transpose over the first
and second indices of a tensor. To lowest order, the gradient ∇s

operator acts only upon the oscillatory term e−ik in eq. (3) and
upon the polarization vector at the source ps, yielding (Zhou et al.
2004),

s(ω) =
∑

σ

S︸︷︷︸
source

radiation

×
(

e−i(k−nπ/2+π/4)

√
8πk| sin |

)
︸ ︷︷ ︸

geometrical ray path

× R︸︷︷︸
receiver

polarization

. (5)

The source radiation term S = (iω)−1(M : E∗
s ), where the quantity

E is the so-called ‘surface wave strain tensor’ (Dahlen & Tromp
1998, section 11.4), and the quantity R = pr · ν̂ is the receiver term.
Detailed expressions of both the source radiation term S and the
receiver term R can can be found in Appendix A.

3 B O R N A P P ROX I M AT I O N I N
R A D I A L LY A N I S O T RO P I C M E D I A

In radially anisotropic media, the forth-order elastic tensor C can be
described by five independent elastic parameters: A, C , N , L and F
(Love 1927). The relation between the elastic parameters and wave
speeds can be written as

αH =
√

A/ρ, αV =
√

C/ρ, βH =
√

N/ρ,

βV =
√

L/ρ, η = F/(A − 2L), (6)

where αH and αV are the wave speeds of horizontally polarized and
vertically polarized P waves, respectively; and βH and βV are the
wave speeds of horizontally polarized and vertically polarized shear
waves, respectively; The fifth parameter η describes the speed of
waves propagating in an intermediate direction.

Consider a spherically symmetric reference earth model where
density and elastic parameters depend only upon the radius r. This
reference model is then subjected to an infinitesimal perturbation in
density and elastic tensor

ρ → ρ + δρ, C → C + δC, (7)

where the latter can be described by perturbations in the five elastic
parameters:

A → A + δA, C → C + δC, N → N + δN ,

L → L + δL , F → F + δF, (8)

and the associated perturbations in wave speeds are

αH → αH + δαH, αV → αV + δαV, βH → βH + δβH,

βV → βV + δβV, η → η + δη. (9)

3.1 Born approximation—perturbed Green’s tensor

In response to perturbations in density and elastic constants, the
associated surface wave Green’s tensor is perturbed by

Grs(ω) → Grs(ω) + δGrs(ω). (10)
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Based upon first-order Born approximation (correct to first order
perturbations in δρ and δC), the Green’s tensor perturbation δGrs(ω)
can be found by solving a perturbed version of eq. (1):

−ω2ρ δGrs − ∇ · (C : ∇δGrs) = δρ ω2 Grs

+∇ · (δC : ∇Grs) in ⊕, (11)

subject to the following boundary conditions:

[n̂ · (C : ∇δGrs)]
+
− = − [n̂ · (δC : ∇Grs)]

+
− on �

[δGrs]
+
− = 0 on �SS,

[n · δGrs]
+
− = 0 on �FS. (12)

Upon using representation theorem (Aki & Richards 2002), the
Green’s tensor perturbation δGrs(ω) can be written as a combination
of volumetric and surface integrations

δGrs =
∫∫∫

⊕
Grx · [

δρ ω2 Gxs + ∇ · (δC : ∇Gxs)
]

d3x

−
∫∫

�

Grx · [n̂ · (δC : ∇Gxs)]
+
− d�. (13)

Gaussian theorem (first Green’s identify) can be applied to eliminate
the surface integrations in eq. (13), yielding,

δGrs =
∫∫∫

⊕

[
δρ ω2 Grx · Gxs − ∇xGrx : δC : ∇Gxs

]
d3x (14)

where ∇ x is the spatial gradient with respect to x.
Upon substituting the normalized surface wave Green’s tensor

(eq. 3), the perturbed Green’s tensor can be written as a double
summation over all surface wave modes σ ′ and σ ′′ as

δGrs(ω) =
∑
σ ′

∑
σ ′′

∫∫∫
⊕

p′
s
∗ p′′

r e−i [k′′+k′′′′−(n′+n′′−1)π/2]

√
8πk ′| sin ′| √

8πk ′′| sin ′′| σ ′�σ ′′ d3x,

(15)

where the single prime
′

indicates the source-to-scatterer leg of the
scattered wave, and the double prime′′ indicates the scatterer-to-
receiver leg of the scattered wave (Fig. A1). The interaction term

σ ′�σ ′′ (x, ω) represents the strength of scattering at the scatterer x,

σ ′�σ ′′ = δρ ω2 (p′· p′′∗) − E′′∗ : δC : E′, (16)

where E′ is the ‘surface wave strain tensor’ of surface wave mode
σ ′ in the source-to-scatterer leg, and E′′ is the ‘surface wave strain
tensor’ of surface wave mode σ ′′ in the scatterer-to-receiver leg,
both evaluated at the scatterer x. The interaction term σ ′�σ ′′ (x, ω)
has linear dependence upon fractional model perturbations

σ ′�σ ′′ = σ ′�m
σ ′′δm = σ ′�

αH
σ ′′

(
δαH

αH

)
+σ ′�

αV
σ ′′

(
δαV

αV

)
+σ ′�

βH
σ ′′

(
δβH

βH

)

+ σ ′�
βV
σ ′′

(
δβV

βV

)
+ σ ′�

η

σ ′′

(
δη

η

)
+ σ ′�

ρ

σ ′′

(
δρ

ρ

)
, (17)

where we have used a shorthand notation for model perturbations

δm : shorthand for δαH/αH, δαV/αV, δβH/βH,

δβV/βV, δη/η, δρ/ρ. (18)

The quantities σ ′�
αH
σ ′′ (x, ω), σ ′�

αV
σ ′′ (x, ω), σ ′�

βH
σ ′′ (x, ω), σ ′�

βV
σ ′′ (x, ω),

σ ′�
η

σ ′′ (x, ω) and σ ′�
ρ

σ ′′ (x, ω) are the ‘scattering coefficients’—they
represent the ‘strength’ of scattering due to perturbations in wave
speeds αH, αV, βH, βV, η and density ρ at the scatterer x. The
dependence of the scattering coefficients σ ′�m

σ ′′ upon the scattering
angle ψ (Fig. A1) is given in Appendix B.

3.2 Perturbed moment tensor seismogram and waveform
kernels

In response to perturbations in wave speeds and density, the dis-
placement at the receiver is perturbed by

s(ω) → s(ω) + δs(ω), (19)

where s(ω) is the displacement in the unperturbed earth model, and
δs(ω) is the displacement of scattered wave due to model pertur-
bations. The scattered wave δs(ω) generated by a moment tensor
source M(ω) can be obtained from the Green’s tensor perturbation
δGrs(ω) via the analogue of eq. (4):

δs(ω) = (iω)−1 M : ∇s

[
δGT

rs(ω)
] · ν̂. (20)

Upon substituting the expression of δGrs(ω) (eq. 15) and making
the same approximation to the spatial gradient operator ∇ s as in
eq. (5), the displacement seismogram of the scattered wave δs(ω)
can be written as a 3-D integration over all model perturbations in
the earth:

δs(ω) =
∫∫∫

⊕
Km(x, ω) δm(x) d3x, (21)

where Km(x, ω) is the complex integration kernel of the displace-
ment of the scattered wave,

Km(x, ω) =
∑
σ ′

∑
σ ′′

S ′
[

e−i (k′′−n′π/2+π/4)

√
8πk ′| sin ′|

]
σ ′�m

σ ′′

×
[

e−i (k′′′′−n′′π/2+π/4)

√
8πk ′′| sin ′′|

]
R′′. (22)

The quantity S ′ is the source term of the scattered wave, that is,
source excitation of the surface wave mode σ ′ that travels from the
source to the scatterer, and R′′ is the receiver term of the scattered
wave, and is dependent upon the arrival angle of the surface wave
mode σ ′′ that travels from the scatterer to the receiver. Detailed
expressions of the source term S ′ and receiver term R′′ of the
scattered wave can be found in Appendix A.

4 M U LT I TA P E R M E A S U R E M E N T S A N D
S E N S I T I V I T Y K E R N E L S

The complex moment tensor displacement seismogram in the ref-
erence earth model can be written as

s(ω) = A(ω)e−iφ(ω) in reference earth model, (23)

where A(ω) and φ(ω) are the amplitude and phase of the refer-
ence seismogram, respectively. The perturbed seismogram can be
expressed in terms of perturbations in the amplitude and the phase,

s(ω) → s(ω) + δs(ω) = [A(ω) + δA(ω)] e−i [ φ(ω)+δφ(ω) ]

in perturbed earth model, (24)

where δφ(ω) and δA(ω) are the frequency-dependent phase
delay and amplitude perturbation of the perturbed (observed)
displacement seismogram with respect to the reference seis-
mogram. Frequency-dependent phase-delay (dispersion) measure-
ments δφ(ω) have been widely used in surface wave tomography;
in additional to phase delays, frequency-dependent amplitude per-
turbations δA(ω) can been used as secondary observables to pro-
vide complementary constraints on the Earth’s 3-D elastic structure
(e.g. Laske & Masters 1996). While both phase-delay and ampli-
tude measurements can be made by comparing the spectra between
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the reference seismogram and the data, spectral estimates made
on windowed seismogram with finite timelength is subjected to
spectral leakage. Therefore, in formulating sensitivity kernels for
phase-delay and amplitude measurements, considerations need to
be taken to account for spectra averaging introduced by seismogram
windowing and/or additional tapering techniques applied in making
measurements.

In this paper, I follow the analysis of Zhou et al. (2004), and
formulate sensitivity kernels of phase-delay and amplitude mea-
surements made with a multitaper technique—which also apply to
any single-taper (e.g. a boxcar taper) measurements as a special
case. It has been suggested that measurements made with a multi
taper technique (Thomson 1982) have better resistance to spectral
bias in surface wave studies (Laske & Masters 1996). The main ad-
vantages of the multitaper technique are that the tapers are prolate
spheroidal eigentapers (Slepian 1978) with narrowly concentrated
spectra, and, they are orthogonal to each other. A reliable spec-
tral estimate can be obtained by least-square fitting of independent
measurements; furthermore, these independent measurements pro-
vide good estimates of measurement errors introduced by spectra
leakage.

Following Zhou et al. (2004), phase delays and amplitude pertur-
bations determined by least-square fitting of multitaper estimates
can be written, correct to first order in the small perturbations, as,

δφ(ω) = −Im

(∑
j δs j s∗

j∑
j s j s∗

j

)
, δ lnA(ω) = Re

(∑
j δs j s∗

j∑
j s j s∗

j

)
,

(25)

where δ lnA(ω) = δA(ω)/A(ω) is the fractional amplitude per-
turbation, and δφ(ω) is the phase delay, both measured with a set
of multitapers through least-square fitting (Laske & Masters 1996).
The quantity s j (ω) = s(ω) ⊗ h j (ω) is the spectrum of the tapered
reference waveform, where h j (ω) is the spectra of the jth taper, and
⊗ is a convolution operator. The quantity δs j (ω) = δs(ω) ⊗ h j (ω)
is the tapered spectra of the scattered waveform. The summation j is
over all the tapers. Note that seismogram tapering—multiplication
of a seismogram in time domain with taper h j (t)—corresponds to
convolution in the spectral domain.

Upon substituting expressions of the scattered waveform δs(ω)
(eqs 21–22), the multitaper phase-delay and amplitude measure-
ments as defined in eq. (25) can be written as volumetric integrations
over model perturbations,

δφ(ω) =
∫∫∫

⊕
K m

φ (x, ω) δm(x) dx3,

δ ln A(ω) =
∫∫∫

⊕
K m

A (x, ω) δm(x) dx3, (26)

and the associated phase and amplitude sensitivity kernels are

K m
φ (x, ω) = −Im

[ ∑
j Km

j (x, ω)s∗
j (ω)∑

j s(ω)s∗
j (ω)

]
, (27)

K m
A (x, ω) = Re

[ ∑
j Km

j (x, ω)s∗
j (ω)∑

j s(ω)s∗
j (ω)

]
, (28)

where

Km
j (x, ω) = Km(x, ω) ⊗ h j (ω) (29)

is tapered complex waveform kernel. The displacement in the un-
perturbed earth model, s(ω), and the complex kernel of the scattered
waveform, Km(x, ω), are given in eqs (5) and (22).

In the case of single-taper (e.g. a boxcar taper) measurements,
the summation over tapers in eqs (27) and (28) can be dropped.
In Section 7, I show that when the taper spectra becomes a Dirac
delta function, the above phase and amplitude kernels reduce to
single-frequency kernels as given by Zhou et al. (2004). It is worth
pointing out that single-frequency sensitivity kernels do not have
direct practical applications as measurements made on a finite time-
length seismogram always involves frequency averaging.

5 S I N G L E - M O D E K E R N E L S I N
R A D I A L LY A N I S O T RO P I C E A RT H

In this section, I show examples of single-mode sensitivity kernels to
illustrate basic diffractional properties of single-mode surface waves
in the presence of anisotropy, as well as to understand variations in
single-mode sensitivity as the mode order (N) increases. As men-
tioned earlier, it is practically difficult to measure the dispersion of a
single overtone mode due to simultaneous multimode arrivals. Sen-
sitivity kernels of multimode measurements—measurements made
between data and (fully mode-summed) synthetics—will be dis-
cussed in Section 6.

The single-mode sensitivity kernels shown in this section are cal-
culated using eqs (27)–(29). In computing single-mode sensitivity
kernels, only a single mode is considered in calculating both the ref-
erence waveform s(ω) and the scattered waveform kernel Km(x, ω),
that is, σ 1 = σ 2 = σ . Therefore, the summation over modes in the
eqs (5) and (22) is dropped. Unless otherwise noted, the reference
earth model used in this paper is anisotropic PREM with the surface
water layer replaced by underlying upper crust.

Discussions in this section are limited to sensitivity kernels of
phase-delay measurements (δφ) to perturbations in anisotropic wave
speeds αH, αV, βH, βV and η. Examples of single-mode, sur-
face wave sensitivity to density (ρ) perturbations can be found in
Section 6. The sensitivity of amplitude measurements (δ lnA) to
wave speed perturbations will also be presented in Section 6.

5.1 Love-wave single-mode kernels

In Fig. 1, Love-wave sensitivity kernels K βH
φ and K βV

φ —sensitivity
of phase delays to perturbations in wave speeds βH and βV—are
plotted for fundamental-mode (N = 0) as well as for the first three
higher-mode (N = 1, 2, 3) surface waves. The kernels are com-
puted for measurements made with three 3 − π Slepian tapers at
10 mHz (100 s). In general, the depth sensitivities as seen in AB
depth cross-sections in Fig. 1 agree with 1-D single-mode Frechét
kernels (Anderson & Dziewonski 1982): higher-mode surface
waves are sensitive to deeper regions than fundamental-mode sur-
face waves; and, the maximum depth of significant sensitivity gen-
erally increases with mode order. At 10 mHz, the third higher-mode
(N = 3) surface wave shows strong sensitivity at depths between 600
and 1500 km, while the sensitivity of the fundamental-mode surface
wave is mostly confined in the top 200 km. In general, Love waves
are more sensitive to perturbations in horizontally polarized shear
wave speed (βH) than to perturbations in vertically polarized shear
wave speed (βV). The sensitivity to perturbations in βV is negligi-
ble for fundamental-mode measurements but becomes significant
for higher-mode measurements. The two sensitivity kernels—K βH

φ

and K βV
φ —are complementary to each other, with K βV

φ concentrated

at shallower depths compared to K βH
φ . Love waves are purely asso-

ciated with shear waves and have no sensitivity to perturbations in
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Multimode kernels in radially anisotropic earth media 869

Figure 1. Single-mode Love-wave sensitivity kernels K βH
φ and K βV

φ , expressing the sensitivity of phase delays to model perturbations in βH and βV. The
depths at which the mapviews are plotted are indicated in the subtitles; the AB depth cross-sections are plotted half-way between the source (S) and the
receiver (R), the dotted lines in the cross-sections are plotted at depths of 400 km and 660 km. Kernels are computed for 10-mHz phase-delay measurements of
fundamental-mode (N = 0) and the first three higher-mode (N = 1, 2, 3) Love waves made with three 3 − π Slepian multitaper. The length of the measurement
window is 800 s for the fundamental mode and 500 s for the overtones, all centred at the group arrival of the corresponding mode. The source–receiver
epicentral distance is  ≈ 80◦. The depth of the earthquake is 14 km, and the source mechanism is indicated by the beachball. Mode coupling has been
ignored (σ ′ = σ ′′ = σ ) in single-mode calculations. The reference earth model is anisotropic PREM. Fundamental-mode Love waves have little sensitivity to
perturbations in βV, and the sensitivity becomes more significant for overtone modes but mostly confined at relatively shallow depths. In general, the width of
the Fresnel zone increases with depth, as seen in the AB depth cross-sections, especially for higher modes.

compressional wave speeds (αH and αV) or the intermediate wave
speed η.

In the mapviews in Fig. 1, higher-order surface wave modes are
associated broader sensitivity than lower-order surface wave modes,
mainly due to their faster propagation speed (group velocity). In re-
gions bounded by the first zero-sensitivity ellipse around the great
circle path, lateral heterogeneities generate scattered waves inter-
fere constructively with the reference wave. The first surface wave
Fresnel zone can be defined as

k(′ + ′′ − ) + π/4 ≤ π, (30)

where the difference in phase between the scattered wave and the
reference wave is within half cycle (π ). This is different from the

definition of ‘Fresnel zone’ for body waves: the additional π /4 phase
shift in eq. (30) is due to the static phase delay of scattered surface
waves upon leaving the secondary source (scatterers)—reflecting a
2-D propagation nature of single-mode surface waves.

The AB depth cross-sections in Fig. 1 show that the width of
the Fresnel zone increases with depths, especially for higher-order
modes (e.g. N = 2, 3.). To make the depth variation in kernel geom-
etry more visible, cross-path sensitivity profiles at different depths
are compared in Fig. 2. The sensitivity profiles have been scaled
to highlight variations in geometry. The increase in the width of
the Fresnel zone with depth is mainly due to frequency averaging
introduced by limited timelength of the measurement window.
It is not surprising that the sensitivity in the deepest regions is
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Figure 2. Panel(a) cross-path profiles at depths of 40 km (blue) and 310 km (red) of the AB depth cross-section of the fundamental-mode (N = 0) Love-wave
kernel K βH

φ in Fig. 1. Panel(b) cross-path profiles at depths of 430 km (blue) and 1000 km (red) of the AB depth cross-section of the third higher-mode (N =
3) Love-wave kernel K βH

φ in Fig. 1. The cross-path profiles have been normalized to highlight variations in kernel geometry with depth. Overall, the width of
the Fresnel zone increases with depth, especially for the overtone mode.

determined by the longest-period signals in the measurement win-
dow, leading to Fresnel zone ‘widening’ with increasing depth. The
‘Fresnel zone widening’ effects are more significant for higher-
mode surface waves than for fundamental-mode surface waves due
to the more dispersive nature of overtone modes.

The sensitivity kernels shown in Fig. 1 are not symmetric with re-
spect to the ray path, simply because source radiation is not symmet-
ric with respect to the great circle ray path. The source mechanism
for this event is indicated by the beach ball at the source. In general,
source radiation pattern depends upon the source mechanism, the
source–receiver geometrical configuration, the mode order as well
as the frequency of the surface wave.

5.2 Rayleigh-wave single-mode kernels

Examples of sensitivity kernels of single-mode Rayleigh waves,
K βV

φ , K αH
φ , K αV

φ , K η

φ—expressing the sensitivity of phase delays to
perturbations in wave speeds βV, αH, αV and η—are plotted in
Fig. 3. While Rayleigh-wave sensitivity to perturbations in β H is
negligible and not plotted in Fig. 3, an example of K βH

φ can be
found in Fig. 8. Fig. 3 shows that Rayleigh waves are most sensi-
tive to perturbations in β V ; and, their sensitivity to perturbations
in P-wave velocities (αV and αH) are mostly confined at shallow
depths. Furthermore, the sensitivities of Rayleigh waves to per-
turbations in αV and αH have opposite polarities. In Section 8, I
show that Rayleigh-wave sensitivity to isotropic P-wave velocity
perturbations is the sum of K αV

φ and K αH
φ ; and, due to their opposite

polarity, Rayleigh-wave sensitivity to isotropic P-wave velocity per-
turbations becomes negligible. However, Rayleigh wave sensitivity
to P-wave anisotropy (i.e. the difference between αH and αV) is
significant. Both K αH

φ and K η

φ are positive within the first Fresnel
zone, indicating that an increase in wave speed αH or η slows down
the propagation of Rayleigh waves.

Higher-mode Rayleigh waves show deeper and broader sensitiv-
ity compared to fundamental-mode Rayleigh waves; and the cou-
pling between P and S waves also becomes stronger in higher-mode
surface waves, as indicated by the stronger overtone sensitivity to
P-wave velocity perturbations. In general, the size of the Fresnel
zone increases with depth, and significant variations in sensitivity
geometry can be identified within the first Fresnel zone as well as in
the kernel sidebands, for both fundamental-mode and higher-mode

Rayleigh waves (Fig. 4), indicating that single-mode scattering is
more a ‘3-D’ feature for Rayleigh waves than for Love waves in this
example. The importance of the 3-D nature of fundamental-mode
surface waves in seismic tomography have been discussed by Zhou
et al. (2005).

6 M U LT I M O D E S E N S I T I V I T Y K E R N E L S

Single-mode sensitivity kernels as shown in Section 5 are often rel-
atively simple in geometry and can be computed very efficiently. In
practice, it is difficult to extract a single higher-mode signal from
a seismogram as different overtone modes in a narrow frequency
band can arrive simultaneously in the seismogram, even at teleseis-
mic distances (Fig. 5). The difficulties have been appreciated by a
number of studies trying to utilize the dispersive nature of higher-
mode surface waves (overtones) (e.g. Lerner-Lam & Jordan 1983;
Nolet 1990; Li & Romanowicz 1996; van Heijst & Woodhouse
1997). In this section, I calculate sensitivity kernels of multimode
measurements, accounting for all simultaneous arrivals within the
measurement window. Eqs (27)–(29) are used to compute multi-
mode phase-delay and amplitude kernels, and, full mode coupling
is taken into account in the computation of both the reference wave
(eq. 5) and the scattered wave (eq. 22).

In the following subsections, I compare the geometry of sensitiv-
ity kernels computed for single-mode and multimode measurements
and show that multimode sensitivity kernels show ‘ray-like’ features
due to coupling among overtone modes. Comparisons will also be
made between the sensitivity of phase-delay measurements and am-
plitude measurements. Most of the discussions in this section are
focused on multimode surface wave sensitivities to perturbations in
anisotropic wave speeds as well as in density—K βV

φ , K αH
φ , K αV

φ , K η

φ

and K ρ

φ ; surface wave sensitivity to isotropic velocity perturbations
will be address in Section 8. In the final subsections, examples are
given to illustrate the dependence of multimode sensitivity upon
measurement frequency, wave train as well as windowing and ta-
pering processes applied in making the measurements.

6.1 Phase and amplitude kernels

In Fig. 6, I compare single-mode and multimode sensitivity kernels
of both phase-delay and amplitude measurements. In single-mode
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Figure 3. Single-mode Rayleigh-wave sensitivity kernels K βV
φ , K αH

φ , K αV
φ , K η

φ—expressing the sensitivity of phase delays to model perturbations in βV, αH,
αV and η. Rayleigh-wave sensitivity to βH is negligible and not plotted in this figure but an example is given in Fig. 8. Kernels are computed for 10-mHz
phase-delay measurements of fundamental-mode (top panel) as well as the second higher-mode (bottom panel) Rayleigh waves made with three 3 − π Slepian
multitapers, the length of the measurement window is 800 s for the fundamental mode and 300 s for the second higher mode, all centred at the group arrival
of the corresponding mode. The source–receiver configuration is the same as in Fig. 1. Note that the overtone mode shows stronger sensitivity to velocity
perturbations in αV and αH than the fundamental mode, and that K αH

φ and K αV
φ are mostly confined at shallow depths and have opposite polarities. The size of

the Fresnel zone increases with depth, as seen in the AB depth cross-sections, especially for the higher mode.

calculations, only the second higher-mode surface waves (N = 2)
are accounted for in computing both the reference wave and the
scattered wave. In multimode calculations, I account for full mode
summation (coupling) in computing both the reference wavefield
and the scattered wavefield. The sensitivity kernels in Fig. 6 are
computed for multitaper measurements made with three 3 − π

Slepian tapers with a 500-s window centred at the group arrival of
the second Love-wave overtone.

The amplitude kernel of the single-mode measurement in Fig. 6
shows a ‘narrower’ region of negative sensitivity around the great-
circle path and stronger sidebands of positive sensitivity, compared
to its corresponding phase-delay kernel. This is consistent with the
characteristics of fundamental-mode amplitude kernels in isotropic
media (Zhou et al. 2004). In high-frequency limit (ray theory), phase
delays are sensitivity to velocity perturbations along the ray, while
amplitudes are sensitive to the second derivative of the velocity

perturbation (Woodhouse & Wong 1986; Zhou et al. 2004). The
mapviews and AB depth cross-sections in Fig. 6 show that the size
of the Fresnel zone is roughly the same in the single-mode and
multimode kernels, indicating that the second overtone (N = 2) is
the most energetic mode within the measurement window in this
example.

The mapviews and depth profiles along the great-circle path show
that the sensitivity of multimode measurements can be very differ-
ent from that of single-mode measurements. Unlike single-mode
kernels, the sensitivity of multimode measurements is no longer
negative everywhere along the ray path. This reflects a more ‘3-D’
nature of multimode surface waves: an anomaly along the geomet-
rical ray path can cause either a phase delay or a phase advance,
depending upon the depth of the anomaly. In the single-mode case,
the along-ray-path profiles show single-mode energy propagating
from the source to the receiver (Fig. 6c); while in the case of

C© 2009 The Author, GJI, 176, 865–888

Journal compilation C© 2009 RAS



872 Y. Zhou

Figure 4. Panel(a) cross-path profiles at depths of 40 km (blue) and 310 km (red) of the AB depth cross-section of the fundamental-mode (N = 0) Rayleigh-
wave kernel K βV

φ in Fig. 3. Panel(b) cross-path profiles at depths of 430 km (blue) and 1000 km (red) of the AB depth cross-section of the second higher-mode
(N = 2) Rayleigh-wave kernel K βV

φ in Fig. 3 The cross-path profiles have been normalized to highlight variations in kernel geometry with depth. Overall, the
width of the Fresnel zone increases with depth, especially for the overtone mode. Note that Rayleigh-wave kernels also show significant depth variations in the
sidebands beyond the first Fresnel zone.

Figure 5. Panels(a) and (b) are group-velocity dispersion curves of fundamental-mode and the first three higher-mode (n = 0, 1, 2, 3) Rayleigh waves and Love
waves, respectively. Panels(c) are (d) are examples of long-period, single-mode and multimode seismograms. The seismograms are generated for an epicentral
distance of ∼80◦, and the source–receiver configurations are the same as in Fig. 1. The overtone-mode seismograms have been amplified and the amplification
factor is indicated on each seismogram. The multimode seismograms at the bottom of panels(c) and (d) are mode-summed seismograms and the summation is
over the first four surface wave modes (n ≤ 3). Due to strong dispersion, different overtone modes arrive closely in time in the long period seismogram, making
it difficult to isolate a single overtone arrival in the mode-summed seismograms. Mode summation over the first four surface wave modes starts to bring out
multiple reflected body wave phases. It is worthy noting that full mode summation is required in the calculation of multimode sensitivity kernels.

multimode, interactions between different modes bring out ‘body
wave’ features (Fig. 6e). The phase and amplitude sensitivity kernels
of multimode measurements show ‘complementary’ features: while
the phase-delay sensitivity kernel in the source–receiver ray-plane
show structures of ‘SS’ and ‘S4’ waves, the amplitude measure-
ment made with the same window is most sensitive to perturbations
along the ‘SSS’ ray path. It is worth noting that traveltimes of direct
body waves have zero sensitivity along the body wave ray path,
while amplitudes have their maximum sensitivity along the ray path
(Dahlen et al. 2000; Dahlen & Baig 2002; Baig & Dahlen 2004). In
Fig. 6, the most energetic modes within the measurement window
correspond to ‘SSS’ waves, therefore, scattered waves generated by
heterogeneities right along the ray path of ‘SSS’ waves will arrive
at the same time as the reference wave and therefore affect only
the amplitude of the measurement, while scattered waves gener-
ated by heterogeneities along the ray path of ‘SS’ and ‘S4’ waves
arrive either before or after the the reference wave (‘SSS’ waves),
and therefore affect the phase of the measurement. The ‘mode-
ray duality’ of long-period, multimode waves indicates a transition
from 2-D propagating surface waves to 3-D multiple-reflected body
waves and the ‘mode-ray duality’ of multimode surface waves will
be addressed in Section 9.

6.2 Velocity and density perturbations—KβV
φ , KαH

φ ,

KαV
φ , Kη

φ and Kρ

φ

Fig. 7 shows examples of phase-delay kernels K βV
φ , K αH

φ , K αV
φ , K η

φ

of a multimode Rayleigh-wave measurement at 10 mHz. Sensitivity
kernels of single-mode measurement made with the same measure-
ment window are plotted in Fig. 3. In general, Rayleigh-wave sen-
sitivity kernels are more ‘messy’ compared to those of Love waves
due to interactions between P waves and S waves. The P-and-S
interaction is most significant at shallow depths where Rayleigh
waves show strong sensitivity to perturbations in anisotropic P-
wave velocities (αH and αV) as well as the intermediate wave speed
η. The sensitivity to P-wave speeds, K αH

φ , and K αV
φ , are both con-

fined at shallow depths and have opposite polarities. In Section 8,
I show that Rayleigh-wave sensitivity to isotropic P-wave velocity
perturbations—the sum of K αH

φ and K αV
φ —becomes very small due

to the opposite polarity of the anisotropic P-wave kernels. Overall,
Rayleigh waves are most sensitive to vertically polarized S-wave
speed (βV), and, the along-ray-path profile of multimode Rayleigh-
wave sensitivity K βV

φ in Fig. 7 indicates that coupling between the
overtone modes brings out structures of body waves.
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Figure 6. Phase-delay (top panels) and amplitude (bottom panels) kernels of single-mode and multimode Love waves. The source–receiver configurations are
the same as in Fig. 1. All mapviews are plotted at 700 km depth. The sensitivity kernels K βH

φ and K βH
A are calculated for 10-mHz Love-wave phase-delay

and amplitude measurements made with three 3 − π Slepian multitapers of 500 s, centred at 1811 s—the group arrival of the second higher-mode (N = 2)
Love wave. In single-mode kernel calculations, only the second higher-mode (N = 2) Love wave is considered in computing both the reference wave and
the scattered wave. In multimode calculations, all surface wave modes are accounted for in computing both the reference wave and the scattered wave. The
along-ray-path depth profile of the multimode kernels shows that mode coupling brings out ‘body wave’ features; and that the multimode phase-delay and
amplitude kernels are ‘complementary’ in sensitivity: while the phase-delay kernel shows structures of ‘SS’ and ‘S4’ waves, the amplitude kernel shows mainly
features of ‘SSS’ waves.

Examples of phase-delay sensitivity to perturbations in density
(ρ) and SH-wave speed (βH) are plotted in Fig. 8. In general, the sen-
sitivity of Rayleigh waves to perturbations in density is much weaker
than the sensitivity to perturbations in SV wave speed (Fig. 7). The
density kernel (K ρ

φ) of the Rayleigh-wave overtone mode shows
polarity variations with depth, consistent with the sensitivity of
fundamental-mode surface waves in isotropic media (Zhou et al.
2004). The geometry of the multimode Rayleigh-wave density ker-
nel becomes more complex compared to the single-mode kernel,

and varies greatly along the great-circle ray path. The sensitivity of
Rayleigh waves to perturbations in SH-wave speed is about an order
of magnitude smaller than the sensitivity to SV -wave speed pertur-
bations (i.e. K βH

φ << K βV
φ ), except for off-ray regions in the case of

multimode measurements. This indicates that Rayleigh-wave mo-
tion in radially anisotropic media is mostly in the source–receiver
ray-plane except for off-ray scattered waves when Love-Rayleigh
cross-branch mode coupling becomes significant. The effects of
cross-branch mode coupling on off-ray surface wave sensitivities
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Figure 7. Multimode Rayleigh-wave kernels K βV
φ , K αH

φ , K αV
φ and K η

φ for a 10-mHz phase-delay measurement made with three Slepian multitapers of 500 s,
centred at 1698 s—the group arrival of the second higher-mode Rayleigh wave. All surface wave modes are accounted for in computing both the reference and
the scattered wave field. The source–receiver configurations are the same as in Fig. 1. The AB cross-sections show that multimode Rayleigh waves are most
sensitive to vertically polarized S-wave speed, and the sensitivity kernel K βV

φ shows structures of ‘SS’ waves. Compared to the multimode Love-wave kernels
in Fig. 6, the ‘ray’ features in Rayleigh-wave multimode kernels are more complex due to additional interactions between P and S waves. The sensitivities of
multimode Rayleigh waves to P-wave speeds αH and αV are significant but mostly confined at shallow depths; and the sensitivity kernels K αH

φ and K αV
φ have

opposite polarities. Rayleigh-wave sensitivity to horizontally polarized S-wave speed as well as to density perturbations (K βH
φ and K ρ

φ ) are plotted in Fig. 8.

have been noted in previous studies (e.g. Zhou et al. 2004; Sieminski
et al. 2007; Panning & Nolet 2008). The colour scale used in Fig. 8
is the same as in Fig. 3 (but different from that in Fig. 7) to make the
relatively weaker sensitivity kernels (K ρ

φ and K βH
φ ) more visible.

6.3 Major-arc multimode kernels

In global surface wave tomography, phase-delay and amplitude mea-
surements are often made on major-arc wave trains in addition to
minor-arc paths to improve the geographical coverage of seismic
data. Due to the spherical geometry of the Earth, the antipodes
of the source and the receiver play a critical role in surface wave

propagation. Fig. 9 shows sensitivity kernels K βH
φ (x, ω) of major-

arc multimode Love-wave (G2) measurements made at 20 and
5 mHz. The measurement window is 300-s, and centred at
the group arrival of the first Love-wave overtone at 10 mHz.
Bandpass filtered major-arc synthetics seismograms are plot-
ted in Fig. 10, where the measurement window is indi-
cated by the shaded box. The mapview of the sensitivity
kernels resembles a sausage link, with ‘pinches’ at the source-
and receiver- antipodes (AS and AR). This antipodal ‘pinching’ has
been noted in single-mode surface wave studies (Wang & Dahlen
1995; Spetzler et al. 2002; Zhou et al. 2004). In the case of multi-
mode measurements, the geometry of the sensitivity can change
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Figure 8. Rayleigh-wave sensitivity kernels K ρ
φ (top panels) and K βH

φ (bottom panels)—expressing the sensitivity of phase delays to perturbations in density
(ρ) and horizontally polarized S-wave speed (βH). The sensitivity kernels are the same as in Figs 3 and 7 except that they are for perturbations in density and
SH-wave speed. The single-mode density kernel (K ρ

φ ) changes its polarity with depth; the corresponding multimode kernel shows more complex structure and
the geometry of the kernel varies along the great-circle path. In general, the sensitivity of Rayleigh waves to SH-wave speed perturbations (K βH

φ ) is negligible,
except for off-ray regions in the case of significant Love-Rayleigh cross-branch mode coupling. All sensitivity kernels are plotted on the same colour scale as
in Fig. 3 but different from that in Fig. 7.

dramatically upon crossing the antipodes, including polarity
changes. For example, the sensitivity of the 20-mHz Love wave
changes polarity from positive in the source (S) to receiver-antipode
(AR) segment to negative in the receiver-antipode (AR) to source-
antipode (AS) segment. This is due to a π /2 phase shift upon waves
crossing the antipodes, leading to different mode interaction patterns
at different sides of the antipodes. The effects of the antipode-π /2
phase shift on mode coupling vary with frequency, as seen from the
kernel geometry of the 20- and 5-mHz measurements. The great-
circle depth profiles of the major-arc Love wave sensitivity kernels
show structures of multiple-reflected S waves. Note that measure-

ments at 5 mHz do not show deeper sensitivity than at 20 mHz, this
is different from single-mode kernels where longer period measure-
ments correspond to deeper sensitivity. The fact that longer period
measurements do not show deeper sensitivity in a multimode sys-
tem indicate that energy-dominant modes within the measurement
window varies with frequency.

Examples of Rayleigh-wave, major-arc, phase-delay sensitivity
kernels are plotted in Fig. 11 for measurements made at 10 and
20 mHz. The measurement window is centred at the group arrival
of the first higher-mode (N = 1) Rayleigh wave at 10 mHz. In
this calculation, source and receiver configurations are the same as
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Figure 9. Examples of multimode sensitivity kernels of major-arc Love-wave (G2) phase-delay measurements at 20 mHz (left-hand panels) and 5 mHz
(right-hand panels), respectively. The source and receiver configurations are the same as in Fig. 1. Sensitivity kernels are computed for phase delays measured
with three 3 − π Slepian multitapers of 300 s, centred at the group arrival of the first higher-mode Love wave at 10 mHz. Measurement windows as well as
bandpass filtered reference seismograms are plotted in Fig. 10. In map views, the sensitivity resembles a sausage link, with ‘pinches’’ at the source and receiver
antipodes (AS and AR). The geometry of the sensitivity kernels changes upon crossing the antipodes (AS and AR), including polarity changes. This is due to
a π /2 phase shift upon waves crossing the antipodes, leading to different mode interaction patterns at different sides of the antipodes. The great-circle depth
profiles show a rough correspondence between the major-arc sensitivity kernels and multiple-reflected S waves. Unlike simple-mode kernels, measurements
at 5 mHz do not show deeper sensitivity than measurements at 20 mHz, indicating that the most energetic modes within the measurement window vary with
frequency.

in Fig. 1 except for that the source is located at 300 km depth to
avoid weak (nodal) source excitations in the great circle direction at
low frequencies. At 10 mHz, the depth profile shows clear polarity
changes upon crossing both the source- and the receiver-antipodes
(AS and AR). This apparent polarity change is not seen at 20 mHz.

The polarity differences in sensitivity between 10 and 20 mHz in-
dicate that energy-dominant modes within measurement window
varies with frequency. It is worth pointing out that a polarity change
upon crossing the antipode is possible but not necessary for all
major-arc kernels, it depends on epicentral distance, measurement
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Figure 10. Bandpass-filtered transverse-component seismogram of a major-arc Love wave (G2) in the reference earth model. The length of shaded time
window is 300 s, centred at the group arrival of the first higher-mode Love wave at 10 mHz. Sensitivity kernels of multitaper phase-delay measurements made
with the shaded time window are plotted in Fig. 9. The source–receiver configurations are the same as in Fig. 1.

frequency, seismogram windowing as well as tapering techniques
applied in making the measurements. The example sensitivity ker-
nels shown in Figs 9 and 11 illustrate only a few of many possible
kernel geometries.

In the calculation of major-arc sensitivity kernels, backscattered
waves in the vicinity of the source- and receiver-antipodes have been
neglected. In small regions close to the antipodes, backscattered
waves may arrive within the measurement window. It has been
suggested that the effects of those scattered wave are relatively
small (Zhou et al. 2004). Therefore, only the most great-circle-like
path is considered at each scatterer in the calculation of scattered
wavefield.

6.4 Frequency dependence of multimode kernels

Examples of multimode Love-wave sensitivity kernels are plotted
in Fig. 12. The sensitivity kernels are calculated for phase delays
at 5 and 20 mHz. The source and receiver configurations are the
same as in Fig. 1 except for that the source is located at a depth
of 350 km such that there is preferred source excitation of higher-
mode surface waves. The mapviews and AB depth cross-sections
show a wider-but-not-deeper sensitivity region in the long-period
(5 mHz) sensitivity kernel compared to the short-period (20 mHz)
sensitivity kernel. The along-ray-path profiles show that both sen-
sitivity kernels roughly correspond to the ray path of ‘S4’ waves,
and, long-period waves do not show deeper sensitivity than short-
period waves—this is consistent with observations made on major-
arc Love waves (Fig. 9). Unlike single-mode kernels, the depth
extent of multimode surface wave sensitivity is determined by the
coupling among surface wave modes.

6.5 Windowing and tapering effects

In Fig. 13, I compare Love-wave sensitivity kernels of 15-mHz
phase-delay measurements made with two different measurement
windows: window I is centred at the group arrival of the first over-
tone mode at 10 mHz and window II is centred at the group arrival of
the second overtone mode at 10 mHz. The sensitivity kernels of the
measurement made with Window I show structures of ‘S4’ waves
as well as fundamental-mode surface waves as the measurement
window picks up late-arriving modes. Window II picks up early-
arriving overtone modes and the corresponding sensitivity kernel
shows structures of ‘SS’ and ‘S4’ waves. The effects of seismogram
tapering on phase-delay sensitivity kernels are illustrated in Fig. 14,
where sensitivity kernels are plotted for measurements made with
the same measurement window but using different tapering tech-

nique: Slepian multitaper, box-car taper and cosine taper (Fig. 14).
The phase-delay sensitivity kernels differ greatly for measurements
made with different tapering technique: the multitaper sensitivity
kernel shows a rough correspondence to ‘SS’ and ‘S4’ waves; the
sensitivity kernel of the boxcar measurement show strong sensitivity
towards the surface of the earth, indicating some fundamental-mode
energy within the measurement window; while the sensitivity kernel
of the cosine-taper measurement shows mainly structures of ‘SS’
waves.

7 S I N G L E - M O D E R E D U C T I O N : 2 - D
S E N S I T I V I T Y K E R N E L S A N D R AY
T H E O RY

Following Zhou et al. (2004), I show in this section that for single-
mode measurement, the 3-D sensitivity to wave speed perturbations
in αH, αV, βH, βV and η and density ρ can be combined to find
the 2-D sensitivity to the local phase-velocity perturbation, δc/c,
using a forward-scattering approximation. The 2-D phase-delay and
amplitude sensitivity kernels K c

φ(r̂, ω) and K c
A(r̂, ω) are defined as

δφ(ω) =
∫∫

�

K c
φ(r̂, ω)

(
δc

c

)
d�,

δ lnA(ω) =
∫∫

�

K c
A(r̂, ω)

(
δc

c

)
d�, (31)

where the integration is over the unit sphere � = {r̂ : ||r̂||2 = 1}.
Upon neglecting mode coupling effects (i.e. assuming that σ ′ =
σ ′′ = σ ), the only depth dependent term in eqs (26)–(29) is the scat-
tering coefficient σ ′�m

σ ′′ implied in the waveform kernel Km(x, ω)
(eq. 22) and the model perturbation δm. The depth integration in
eq. (26) reduces to local phase-velocity perturbation (δc/c) upon
applying a paraxial forward-scattering approximation (i.e. the scat-
tering angle ψ = arccos(k′ · k′′) = 0):∫ a

0

[
σ ′�

αH
σ ′′

(
δαH

αH

)
+ σ ′�

αV
σ ′′

(
δαV
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)
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(
δβV
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)]
r 2 dr

+
∫ a

0
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σ ′�

βH
σ ′′

(
δβH

βH

)
+ σ ′�

η

σ ′′

(
δη

η

)
+ σ ′�

ρ

σ ′′

(
δρ

ρ

)]
r 2 dr

= −2k2

(
δc

c

)
, (32)

where c = ω/k is the phase velocity measured in rad s−1, and
δc(r̂, ω) is the associated local perturbation in phase velocity. The
above analytical expression of the depth integration can be applied
to reduce the the 3-D integration in eq. (26) to 2-D, leading to 2-D
multitaper sensitivity kernels. In the case of single-frequency waves,
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Figure 11. Examples of multimode sensitivity kernels of major-arc Rayleigh-wave (R2) phase-delay measurements at 10 mHz (left-hand panels) and 20 mHz
(right-hand panels), respectively. The source and receiver configurations are the same as in Fig. 1 except for that the source is located at 300 km depth in
this calculation. At 10 mHz, the along-ray-path depth profile shows that the polarity of the sensitivity kernel changes upon crossing the antipodes (AS and
AR). This is due to a π /2 phase shift upon waves crossing the antipodes, leading to different mode interaction patterns at different sides of the antipodes. This
apparent polarity change upon crossing the antipodes is not seen at 20 mHz. The depth profiles show a rough correspondence between the major-arc sensitivity
kernels and multiple-reflected S waves; and, measurements at 10 mHz do not show deeper sensitivity than at 20 mHz, indicating that the most energetic modes
within the measurement window vary with frequency. The sensitivity kernels are computed for phase delays measured with three 3 − π Slepian multitapers of
500 s, centred at 6911 s—the group arrival of the first higher-mode Rayleigh wave at 10 mHz.

the taper spectra in eqs (27)–(29) reduces to a Dirac delta function,
that is, h(ω) = δ(ω), and the 2-D kernels can be expressed as (Zhou
et al. 2004)

K c
φ(r̂, ω) = Im

[
2k2S ′R′′e−i [k(′+′′−)−(n′+n′′−n)π/2+π/4]

SR
√

8πk(| sin ′|| sin ′′|/| sin |)

]
, (33)

K c
A(r̂, ω)=−Re

[
2k2S ′R′′e−i [k(′+′′−)−(n′+n′′−n)π/2+π/4]

SR
√

8πk(| sin ′|| sin ′′|/| sin |)

]
. (34)

Zhou et al. (2004) show that the above 2-D finite-frequency sensitiv-
ity kernels further reduces to ray theory when model perturbations
vary slowly over space and the length scale of lateral heterogeneities
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Figure 12. Examples of minor-arc Love-wave sensitivity kernels at 5 and 20 mHz. Sensitivity kernels are computed for phase delays measured with three 3
− π Slepian multitapers of 500 s, centred at 2085 s—the group arrival of the first higher-mode Love wave at 10 mHz. The source and receiver configurations
are the same as in Fig. 1 except for that the source is located at a depth of 350 km. The mapviews and AB depth cross-sections show a wider-but-not-deeper
sensitivity region in the long-period (5 mHz) sensitivity kernel compared to the short-period (20 mHz) sensitivity kernel. The along-ray-path profiles show that
both sensitivity kernels roughly correspond to the ray path of ‘S4’ waves.

is much larger than the size of the Fresnel zone. It is worth pointing
out that the reduction to 2-D kernel and to surface wave ray theory
is only possible for single-mode waves. For multimode measure-
ments, the sensitivity is fully 3-D as a result of cross-branch mode
coupling.

8 K E R N E L S F O R I S O T RO P I C
P E RT U R B AT I O N S

In this section, I show that it is straightforward to combine
anisotropic sensitivity kernels to obtain sensitivity kernels for
isotropic velocity perturbations. In isotropic media,

αH = αV, βH = βV and η = 1, (35)

and,

δαH = δαV = δα, δβH = δβV = δβ, δη = 0. (36)

Phase-delay and amplitude measurements (δφ and δ lnA) in an
isotropic earth model can be written as volumetric integration over
perturbations in isotropic wave speeds (α and β) and density (ρ) as

δφ(ω) =
∫∫∫

⊕

[
K α

φ (x, ω) δ ln α(x) + K β

φ (x, ω) δ ln β(x)

+ K ρ

φ (x, ω) δ ln ρ(x)
]

dx3,

δ ln A(ω) =
∫∫∫

⊕

[
K α

A(x, ω) δ ln α(x) + K β

A(x, ω) δ ln β(x)

+ K ρ

A(x, ω) δ ln ρ(x)
]

dx3,
(37)

where K α
φ,A and K β

φ,A are the isotropic phase and amplitude sensi-
tivity kernels—representing the sensitivity of phase-delay and am-
plitude measurements to isotropic P- and S-wave velocity pertur-
bations, respectively. In eq. (26), the product of the scattering coef-
ficients σ ′�m

σ ′′ and model perturbation δm in the integration kernel

can be re-arranged using eqs (35) and (36),

σ ′�m
σ ′′δm = σ ′�

αH
σ ′′

(
δαH

αH

)
+ σ ′�

αV
σ ′′

(
δαV

αV

)
+ σ ′�

βV
σ ′′

(
δβV

βV

)

+ σ ′�
βH
σ ′′

(
δβH

βH

)
+ σ ′�

η

σ ′′

(
δη

η

)
+ σ ′�

ρ

σ ′′

(
δρ

ρ

)

= σ ′�α
σ ′′

(
δα

α

)
+ σ ′�

β

σ ′′

(
δβ

β

)
+ σ ′�

ρ

σ ′′

(
δρ

ρ

)
, (38)

where σ ′�α
σ ′′ and σ ′�

β

σ ′′ are the isotropic scattering coefficients—
representing the ‘strength’ of scattering due to perturbations in wave
speeds α and β, and,

σ ′�α
σ ′′ = σ ′�

αH
σ ′′ + σ ′�

αV
σ ′′ , σ ′�

β

σ ′′ = σ ′�
βH
σ ′′ + σ ′�

βV
σ ′′ . (39)

The linear dependence of the sensitivity kernels upon the scattering
coefficients guarantees

K α
φ,A = K αH

φ,A + K αV
φ,A, K β

φ,A = K βH
φ,A + K βV

φ,A. (40)

Examples of phase-delay sensitivity kernels to anisotropic as well as
to isotropic velocity perturbations are plotted in Fig. 15 for single-
mode measurements. The sensitivity of phase delays to isotropic
S-wave velocity perturbations is the sum of the sensitivity to SH-
and SV -velocity perturbations (eq. 40). The sensitivities of Love
waves to perturbations in SH- and SV - wave speed are complemen-
tary, therefore, Love waves are more sensitive to perturbations in
isotropic S-wave velocity (β) than to perturbations in anisotropic
S-wave speeds (βH or βV). For single-mode Rayleigh waves, phase
delays are most sensitive to perturbations in βV, and the sensitivity
to perturbations in βH is negligible (Fig. 8). The sensitivities of
Rayleigh waves to perturbations in αH and αV have opposite po-
larities, as a result, the sensitivity of a single-mode Rayleigh wave
to perturbations in isotropic P-wave velocity (α) is very weak and
only confined at shallow depths.

Examples of multimode surface wave sensitivity to anisotropic
and isotropic velocity perturbations are plotted in Fig. 16. The
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Figure 13. Examples of multimode Love-wave sensitivity kernels (K βH
φ ) of 15-mHz phase-delay measurements made with three 3 − π Slepian multitapers

applied on two different measurement windows: Window I is 300-s and centred at the group arrival of the first higher-mode Love wave at 10 mHz; and
Window II is 500-s and centred at the group arrival of the second higher-mode Love wave at 10 mHz. The seismograms are bandpass filtered between 15 and
20 mHz. The source and receiver configurations are the same as in Fig. 1. The phase-delay kernel of the later arrival (Window I) shows shallower sensitivity
and structures of ‘S4’ waves as well as fundamental-mode surface waves; while the sensitivity kernel of the earlier arrival (Window II) shows deeper sensitivity
and structures ‘SS’ and ‘S4’ waves.

coupled-mode Love waves show strong sensitivity to SH-wave
speed perturbations, and, the along-ray-path profile of K βH

φ show
characteristics of ‘SS’ and ‘S4’ waves. The sensitivity of multimode
Love waves to SV -wave speed perturbations is weaker and confined
at shallower depths, and, the along-ray-path profile of K βV

φ shows
structure of ‘S4’ waves. The polarity of the anisotropic sensitivity
kernels, K βH

φ and K βV
φ , is the same; as a result, the isotropic sensitiv-

ity kernel K β

φ is stronger than the anisotropic kernels (K βH
φ or K βV

φ ).
The multimode Rayleigh-wave kernel shown in Fig. 16 confirms
the significance of Rayleigh-wave sensitivities to perturbations in
anisotropic P-wave velocities (αH and αV); and, the sensitivity of
multimode Rayleigh waves to perturbations in isotropic P-wave ve-
locity (α) is much weaker due to the opposite polarity of K αH

φ and
K αV

φ . It is worth pointing out that sensitivity kernels in this sec-
tion (Figs 15 and 16) are computed using an isotropic reference
earth model, 1066A (Gilbert & Dziewonski 1975), and the sensi-
tivity kernels do not show strong dependence upon the reference
model.

9 M O D E - R AY D UA L I T Y A N D J E A N ’ S
R E L AT I O N

The relation between ‘modes’ and ‘rays’ can be quantified using
Jean’s relation (1927)

ωp = l + 1/2, (41)

where ω is the frequency of the wave, l is the angular order of
the mode, and p is the ray parameter of the corresponding ‘ray’.
The dispersion diagram (ω– l) of Love wave modes in anisotropic
PREM is plotted in Fig. 17. A suite of modes (ω, l) with a constant
ray parameter of p ≈ 915 s is plotted in a blue line, correspond-
ing to rays turning at ∼700 km with a turning point velocity of
∼6.2 km s−1. The blue line intercepts with the second higher mode
(N = 2) at a frequency of ∼10 mHz. Examples of sensitivity
kernels for measurements made windows centred at the group ar-
rivals of the second higher mode Love wave (N = 2) at 10 mHz
are plotted in Fig. 18, at epicentral distances of 80◦, 100◦ and
120◦. Regardless of the epicentral distances—which correspond to
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Figure 14. Examples of multimode Love-wave sensitivity kernels (K βH
φ ) of 10-mHz phase-delay measurements made with three different tapering techniques:

(a) three 3 − π Slepian multitapers, (b) single box-car taper and (c) single cosine taper. All tapers are 500-s in length and centred at 1811 s—the group arrival
of the second Love-wave higher mode at 10 mHz. Measurements made with different tapering techniques show significantly different sensitivity to model
perturbations: the sensitivity kernel of the multitaper measurement shows rough correspondences to ‘SS’ and ‘S4’ waves; the boxcar measurement shows strong
sensitivity towards the surface of the earth, indicating fundamental-mode energy picked up by the box-car taper; and the sensitivity kernel of the cosine-taper
measurement shows mainly structures of ‘SS’ waves.

different time windows in seismogram—the maximum sensitivity of
the phase-delay measurements are located at around 700 km depth.
The along-ray-path profiles show structures of different groups of
‘rays’ at different epicentral distance: at epicentral distance of  =
80◦, the sensitivity kernel shows structures of ‘SS’ and ‘S4’ waves,
while at  = 120◦, the sensitivity kernel shows clear features of
turning ‘rays’, but does not show apparent correspondence to ‘stan-
dard’ body wave phases.

Jean’s relation allows us to associate ‘rays’ with dispersive ‘mode’
signals. The turning depth of a body wave ‘ray’ determines the ray
parameter (p), and, the arrival times of this particular ‘ray’ (mea-
surement window) can be calculated based upon the ray parameter
for any given epicentral distance, meanwhile, Jean’s relation can be
used to determine the suite of surface wave modes (ω, l) associ-
ated with the ray parameter. In another word, seismic waves can be
viewed as either ‘rays’ or ‘modes’, and, a measurement time window
at a given epicentral distance is associated the ‘turning points’ of the
‘rays’ and the maximum sensitivity depth of the coupled ‘modes’.
The angular quantization relation (eq. 41) between ‘modes’ and
‘rays’ can be used to provide guidelines for measurement window
determination to maximize the sensitivity at a target depth range.

The long-period, multimode, surface wave sensitivity kernels
in Section 6 show ‘ray’ characteristics of multiple-reflected body

waves; strictly speaking, they are often associated with families of
‘rays’ instead of a single ‘ray’ due to the finite length of the measure-
ment window; and, the ‘ray’ features do not necessary correspond to
‘standard’ body wave phases. Seismic signals that arrive just before
fundamental-mode surface waves travel at a slow speed, and corre-
spond to ‘rays’ with large ray parameters p (shallow ‘turning points’)
or overtone ‘modes’ with shallow depth sensitivities. At short pe-
riod (< ∼50 s), low-order, surface wave overtones have similar
dispersion properties (Fig. 5), therefore, coupling among overtone
modes brings out multiple-reflected body wave ‘ray’ features that
can be stable over the frequency band; furthermore, the number
of modes that need to be considered increases with frequency; as
a result, short-period signals can be more efficiently analysed as
multiple-reflected body waves than coupled modes. At longer pe-
riod (> ∼50 s), the number of overtone modes need to be considered
is limited (Fig. 17), moreover, overtone modes are in general more
dispersive at longer period and their dispersion curves are further
apart (Fig. 5); as a result, the ‘ray’ features associated with mode
coupling show more variations with frequency and the multimode
signals are more dispersive. Therefore, long-period waves can be
more readily analysed as ‘modes’ as opposed to ‘rays’. The ‘mode’
nature of longer-period waves can become more significant when
there is preferred source excitation of a single overtone mode.
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Figure 15. Examples of single-mode Love-wave (top panels) and Rayleigh-wave (bottom panels) sensitivity kernels to anisotropic as well as isotropic velocity
perturbations. The sensitivity kernels are computed for 10-mHz phase delays measured with three 3 − π Slepian multitapers of 500 s, centred at the group
arrival of the second higher-mode (N = 2) Love (Rayleigh) waves. The source and receiver configurations are the same as in Fig. 1, and the reference earth
mode is 1066A (Gilbert & Dziewonski 1975). The sensitivity of Love waves to isotropic S-wave velocity perturbations is the sum of the sensitivity to SH- and
SV - velocity perturbations, that is, K β

φ = K βH
φ + K βV

φ . The sensitivity kernels K βH
φ and K βV

φ are complementary and add up to a stronger isotropic S-wave
kernel K β

φ . The sensitivity of Rayleigh waves to isotropic P-wave velocity perturbations is the sum of the sensitivity to PH- and PV - velocity perturbations,

that is, K α
φ = K αH

φ + K αV
φ . The sensitivity of Rayleigh waves to isotropic P-wave velocity perturbations is very weak and only confined at shallow depths, due

to the opposite polarity of K αH
φ and K αV

φ .

1 0 D I S C U S S I O N A N D C O N C LU S I O N

I develop 3-D Born theory for multimode surface wave observ-
ables in radially anisotropic earth model. The sensitivity kernels
K βH

φ,A, K βV
φ,A, K αH

φ,A, K αV
φ,A, K η

φ,A and K ρ

φ,A—expressing the sensitiv-
ity of phase-delay and amplitude measurements to perturbations in
wave speeds βH, βV, αH, αV, η and density ρ—are developed in the
framework of surface wave mode summation for multitaper mea-
surements, though the results also apply to single-taper and no-taper
(single-frequency) measurements as a special case.

Calculations of both single-mode and multimode surface wave
kernels show that waves of different polarizations are coupled in
radially anisotropic media. Love waves are most sensitive to SH
wave speed (βH); and, their sensitivities to SV wave speed (βV) are
significant, especially at shallow depths. Rayleigh waves are most
sensitive to SV wave speed (βV), and, their sensitivities to PH- and
PV - wave speeds (αH and αV) as well as η are significant.

I show that velocity sensitivity kernels in an isotropic earth
model are simply the sum of the sensitivity kernels to anisotropic
wave speed perturbations, that is, K α

φ,A = K αH
φ,A + K αV

φ,A and

C© 2009 The Author, GJI, 176, 865–888

Journal compilation C© 2009 RAS



Multimode kernels in radially anisotropic earth media 883

Figure 16. The same as Fig. 15 but for multimode measurements.

K β

φ,A = K βH
φ,A + K βV

φ,A. The sensitivity kernels of Love waves to
SH- and SV -velocity perturbations are complementary, as a result,
Love waves are more sensitive to perturbations in isotropic S-wave
speed (β) than anisotropic wave speeds (βH or βV). The sensitivity
kernels of Rayleigh waves to PH- and PV -velocity perturbations,

K αH
φ,A and K αV

φ,A, have opposite polarities, therefore, Rayleigh-wave
sensitivity to isotropic P-wave velocity perturbation (K α

φ,A) is very
small and is confined in regions close to the surface of the Earth.

Calculations of sensitivity kernels of multimode measurements
show body wave ‘ray’ features due to coupling among overtone
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Figure 17. (a) SH-wave velocity in the uppermost 1500 km of the reference model (PREM); (b) Long-period Love-wave dispersion diagram computed for
the reference model, PREM. The blue line represents a suite of modes that satisfies a frequency–angular degree relation, ω = (1/p) (l + 1/2), with p being the
ray parameter computed for rays turning at ∼700 km depth in the reference model. At 10 mHz, the blue line intercepts with the second higher-mode (N = 2)
Love-wave dispersion curve at an angular degree of l ≈ 55. Sensitivity kernels of phase delays made with measurement windows centred at the group arrival
of the second higher-mode Love wave at different epicentral distances are plotted in Fig. 18.

Figure 18. Examples of sensitivity kernels K βH
φ of measurements made with a 500-s time window centred at the group arrival of the second higher-mode

(N = 2) Love waves at epicentral distances  = 80◦, 100◦ and 120◦. Sensitivity kernels are computed for 10-mHz, multimode, Love-wave, phase delays
measured with three 3 − π Slepian multitaper. The along-ray-path profiles show that the second higher-mode Love-wave arrivals at different epicentral distances
correspond to different groups of ‘rays’. Regardless of epicentral distances, all kernels display a maximum sensitivity at around 700 km depth—the turning
depth of the corresponding ‘rays’ associated with the second overtone mode. The source–receiver configurations are similar to Fig. 1, and all mapviews are
plotted in the ray coordinates.
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modes, and, phase-delay and amplitude measurements show com-
plementary sensitivity. The connection between ‘modes’ and ‘rays’
can be quantified using Jean’s relation—which relates the angular
order of a ‘mode’ to the ray parameter of the corresponding ‘ray’.
Seismic waves can be analysed either as ‘rays’ or as ‘modes’; and,
it is the measurement time window that determines the ‘turning
point’ of the ‘rays’ and the maximum sensitivity depth of the cou-
pled ‘modes’. Jean’s relation can be applied to determine measure-
ment time windows that maximize data sensitivity in a desired depth
range. In general, short-period (< ∼ 50 s) waves can be more effi-
ciently analysed in the ray framework as the ‘ray’ features brought
out by mode coupling can be stable over the frequency range; and,
the number of modes associated with high-frequency waves is large.
Long-period (> ∼ 50 s) waves can be more readily analysed in the
mode framework as the number of surface wave modes involved is
limited, and the multimode signals are more dispersive. I point out
that measurement process should be carefully taken into account in
computing multimode sensitivity kernels.

In the case of single-mode measurements, a forward-scattering
approximation is used to reduce the exact 3-D sensitivity kernels to
2-D kernels K c

φ,A(r̂, ω), expressing the phase-delay and amplitude
sensitivity to local phase-velocity (δc/c) perturbations. The 2-D
kernels can be further reduced to ray theory for single-frequency
measurements as shown by Zhou et al. (2004).

Multimode sensitive kernels developed in this paper are com-
puted with full mode coupling, the computational expense increases
as M2, where M is the total number of the surface wave modes within
the measurement frequency band. This is computationally expen-
sive, especially for relatively high-frequency (e.g. >10 mHz) mea-
surements. A fast computation scheme has been developed to speed
up kernel computations for large data set and will be documented
in a separate paper (Zhou, in preparation). The development of low-
frequency (<20 mHz), multimode surface wave kernels opens the
opportunity for imaging high-resolution 3-D structure of velocity
and radial anisotropy in the top ∼1500 km of the mantle.
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r is the unit wavenumber vector of the scattered surface wave mode σ ′′ at the receiver; ζ ′ is the source
takeoff angle of the outgoing surface wave mode σ ′; ξ ′′ is the receiver arrival angle of the scattered surface wave mode σ ′′; ψ is the scattering angle, measured
counterclockwise from k̂′ to k̂′′.

Zhou, Y., Nolet, G., Dahlen, F.A. & Laske, G., 2006. Global upper-mantle
structure from finite-frequency surface wave tomography, J. geophys. Res.,
111, B04304, doi:10.1029/2005JB003677.

A P P E N D I X A : T H E S O U RC E A N D
R E C E I V E R T E R M

In this appendix, I give detailed expressions of the source radiation
term and the receiver term introduced in eqs (5) and (22). Those
expressions can also be found in Zhou et al. (2004). The source
radiation term for mode σ is defined as

S = Sσ (ζ ) = (iω)−1(M :E∗
s ), (A1)

where ζ is the source take-off angle measured counterclockwise
from the South (Fig. A1), the second order tensor Es is the surface
wave strain tensor (Dahlen & Tromp 1998, section 11.4) evaluated
at the source xs; the asterisk denotes the complex conjugate, and
the quantity M is the source moment tensor. Upon substituting
expressions of E∗

s and M in eq. (A1), the source radial term becomes

S = −i ω−1
[

Mrr U̇s + (Mθθ + Mφφ)r−1
s

(
Us − 1

2 kVs

) ]
+ω−1(−1)n

(
V̇s − r−1

s Vs + kr−1
s Us

) (
Mrφ sin ζ + Mrθ cos ζ

)
+ i ω−1kr−1

s Vs

[
Mθφ sin 2ζ + 1

2 (Mθθ − Mφφ) cos 2ζ
]

+ω−1(−1)n
(
Ẇs − r−1

s Ws

) (
Mrθ sin ζ − Mrφ cos ζ

)
+ i ω−1kr−1

s Ws

[
1
2

(
Mθθ − Mφφ

)
sin 2ζ − Mθφ cos 2ζ

]
. (A2)

The displacement eigenfunctions U s, V s, W s of mode σ and their
derivatives U̇s, V̇s and Ẇs are evaluated at the radius of the seismic
source, r = r s. The quantities M r r, M φφ , M θθ , M rθ , M rφ and M θφ

are the six independent elements of the moment tensor M(ω).
The receiver polarization term R is defined as

R = pr · ν̂ = [
r̂rUr − i k̂rVr + i(r̂r × k̂r)Wr

] · ν̂, (A3)
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where U r, V r and W r are the displacement eigenfunction of
surface wave mode σ evaluated at the radius of the receiver, r = r r.
For the reference wave in the spherically symmetric background
earth model, the seismometer polarization of vertical, radial and
transverse component seismic recordings are

ν̂ =

⎧⎪⎨
⎪⎩

r̂r vertical component,

k̂r radial component,

r̂r × k̂r transverse component;

(A4)

and the associated receiver term R = Rσ for the reference wave in
the spherical background model is is given by

R =

⎧⎪⎨
⎪⎩

Ur vertical component,

−i Vr radial component,

iWr transverse component.

(A5)

and the associated receiver term for the scattered wave becomes

R′′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U ′′
r vertical

component,

−i V ′′
r cos(ξ ′′ − ξ ) − iW ′′

r sin(ξ ′′ − ξ ) radial

component,

iW ′′
r cos(ξ ′′ − ξ ) − i V ′′

r sin(ξ ′′ − ξ ) transverse

component,

(A6)

where U ′′
r = Uσ ′′ (rr), V ′′

r = Vσ ′′ (rr), W ′′
r = Wσ ′′ (rr), and ξ ′′ and ξ

are the receiver arrival angles of the scattered wave (σ ′′th mode)
and the reference wave (σ th mode), respectively, both measured
counterclockwise from geographical south (Fig. A1).

A P P E N D I X B : T H E I N T E R A C T I O N
T E R M σ ′	σ ′′

The interaction term given in eq. (16) is rewritten below:

σ ′�σ ′′ = δρ ω2 (p′· p′′∗) − E′′∗ : δC : E′ (B1)

where the asterisk denotes the complex conjugate; and and ′ and
′′ indicate surface wave mode σ ′ in the source-to-scatterer and
mode σ ′′ in the scatterer-to-receiver leg, respectively; the quan-
tity p′ = r̂U ′ − i k̂′V ′ + i (r̂ × k̂′)W ′ is the polarization vec-
tor of surface wave mode σ ′ in the source-to-scatterer leg; and
p′′ = r̂U ′′ − i k̂′′V ′′ + i (r̂× k̂′′)W ′′ is the polarization vector of sur-
face wave mode σ ′′ in the scatterer-to-receiver leg. The quantity E is
the surface wave strain tensor as defined in Dahlen & Tromp (1998,
section 11.4); the quantity δC is the perturbation in elastic tensor in
radially anisotropic media,

δC = δC r̂r̂r̂r̂ + δA(θ̂ θ̂ θ̂ θ̂ + φ̂φ̂φ̂φ̂)

+ δF(r̂r̂θ̂ θ̂ + θ̂ θ̂ r̂r̂ + r̂r̂φ̂φ̂ + φ̂φ̂r̂r̂)

+ (δA − 2δN )(θ̂ θ̂ φ̂φ̂ + φ̂φ̂θ̂ θ̂ )

+ δN (θ̂ φ̂θ̂ φ̂ + φ̂θ̂ φ̂θ̂ + θ̂ φ̂φ̂θ̂ + φ̂θ̂ θ̂ φ̂)

+ δL(r̂θ̂ r̂θ̂ + θ̂ r̂θ̂ r̂ + r̂θ̂ θ̂ r̂ + θ̂ r̂r̂θ̂

+ r̂φ̂r̂φ̂ + φ̂r̂φ̂r̂ + r̂φ̂φ̂r̂ + φ̂r̂r̂φ̂), (B2)

and all quantities in eq. (B1) are evaluated at the scatterer.
To the first order, perturbations in the elastic constants A, C , N ,

L and F can be related to perturbations in anisotropic wave speed

using eq. (6).

δA = δρα2
H + 2ραHδαH, δC = δρα2

V + 2ραVδαV,

δN = δρβ2
H + 2ρβHδβH, δL = δρβ2

V + 2ρβVδβV,

δF = δη(A − 2L) + η(δA − 2δL). (B3)

Upon substituting eqs (B3) and (B2) in eq. (B1), the interaction
term σ ′�σ ′′ can be expressed as a linear combination of fractional
perturbations δαH/αH, δαV/αV, δβH/βH, δβV/βV, δη/η and δρ/ρ:

σ ′�σ ′′ = σ ′�m
σ ′′δm = σ ′�

αH
σ ′′

(
δαH

αH

)
+ σ ′�

αV
σ ′′

(
δαV

αV

)

+ σ ′�
βH
σ ′′

(
δβH

βH

)
+ σ ′�

βV
σ ′′

(
δβV

βV

)
+ σ ′�

η

σ ′′

(
δη

η

)

+ σ ′�
ρ

σ ′′

(
δρ

ρ

)
, (B4)

where σ ′�
αV
σ ′′ , σ ′�

αH
σ ′′ , σ ′�

βV
σ ′′ , σ ′�

βH
σ ′′ , σ ′�

η

σ ′′ and σ ′�
ρ

σ ′′ are the scatter-
ing coefficients. For Love-to-Love scattering,

σ ′�
αH
σ ′′ = 0;

σ ′�
αV
σ ′′ = 0;

σ ′�
βH
σ ′′ = −2ρβ2

H k ′k ′′r−2W ′W ′′ cos 2ψ ;

σ ′�
βV
σ ′′ = −2ρβ2

V (Ẇ ′ − r−1W ′)(Ẇ ′′ − r−1W ′′) cos ψ

σ ′�
η

σ ′′ = 0

σ ′�
ρ

σ ′′ = ρω2W ′W ′′ cos ψ

− ρβ2
V(Ẇ ′ − r−1W ′)(Ẇ ′′ − r−1W ′′) cos ψ

− ρβ2
Hk ′k ′′r−2W ′W ′′ cos 2ψ ;

for Rayleigh-to-Rayleigh scattering,

σ ′�
αH
σ ′′ = −2ρα2

Hr−2(2U ′ − k ′V ′)(2U ′′ − k ′′V ′′)

− 2ρα2
Hηr−1[ U̇ ′(2U ′′ − k ′′V ′′) + U̇ ′′(2U ′ − k ′V ′) ]

σ ′�
αV
σ ′′ = −2ρα2

VU̇ ′U̇ ′′

σ ′�
βH
σ ′′ = 2ρβ2

Hr−2(2U ′ − k ′V ′)(2U ′′ − k ′′V ′′)

− 2ρβ2
Hr−2k ′k ′′V ′V ′′ cos 2ψ

σ ′�
βV
σ ′′ = 4ρβ2

Vηr−1[ U̇ ′(2U ′′ − k ′′V ′′) + U̇ ′′(2U ′ − k ′V ′) ]

− 2ρβ2
V(V̇

′ − r−1V ′ + r−1k ′U ′)(V̇ ′′ − r−1V ′′

+ r−1k ′′U ′′) cos ψ

σ ′�
η

σ ′′ =
(
2ρβ2

V − ρα2
H

)
ηr−1[ (U̇ ′(2U ′′ − k ′′V ′′)+U̇ ′′(2U ′ − k ′V ′)]

σ ′�
ρ

σ ′′ = ρω2(U ′U ′′ + V ′V ′′ cos ψ) − ρα2
VU̇ ′U̇ ′′

− ρ(α2
H + β2

H)r−2[(2U ′ − k ′V ′)(2U ′′ − k ′′V ′′)]

− rho(α2
H − β2

V)ηr−1[U̇ ′(2U ′ − k ′V ′) + U̇ ′′(2U ′′ − k ′′V ′′)]

− ρβ2
V(V̇ ′ − r−1V ′ + k ′r−1U ′)(V̇ ′′ − r−1V ′′

+ k ′′r−1U ′′) cos ψ

− ρβ2
Hk ′k ′′r−2V ′V ′′ cos 2ψ ;
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for Love-to-Rayleigh scattering,

σ ′�
αH
σ ′′ = 0;

σ ′�
αV
σ ′′ = 0;

σ ′�
βH
σ ′′ = 2ρβ2

Hr−2k ′k ′′W ′V ′′ sin 2ψ ;

σ ′�
βV
σ ′′ = 2ρβ2

V (Ẇ ′ − r−1W ′)(V̇ ′′ − r−1V ′′ + k ′′r−1U ′′) sin ψ ;

σ ′�
η

σ ′′ = 0;

σ ′�
ρ

σ ′′ = −ρω2W ′V ′′ sin ψ

+ ρβ2
V (Ẇ ′ − r−1W ′)(V̇ ′′ − r−1V ′′ + k ′′r−1U ′′) sin ψ

+ ρβ2
Hk ′k ′′r−2W ′V ′′ sin 2ψ ;

for Rayleigh-to-Love scattering,

σ ′�
αH
σ ′′ = 0;

σ ′�
αV
σ ′′ = 0;

σ ′�
βH
σ ′′ = −2ρβ2

Hr−2k ′k ′′V ′W ′′ sin 2ψ ;

σ ′�
βV
σ ′′ = −2ρβ2

V(V̇ ′ − r−1V ′ + k ′r−1U ′)(Ẇ ′′ − r−1W ′′) sin ψ ;

σ ′�
η

σ ′′ = 0;

σ ′�
ρ

σ ′′ = ρω2V ′W ′′ sin ψ

− ρβ2
V(V̇ ′ − r−1V ′ + k ′r−1U ′)(Ẇ ′′ − r−1W ′′) sin ψ

− ρβ2
Hk ′k ′′r−2V ′W ′′ sin 2ψ.

The quantity ψ = arccos(k̂′ · k̂′′) is the scattering angle, measured
counterclockwise from k̂′ to k̂′′ (Fig. A1).
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